To:
The Honorable Greg Abbott, Governor of Texas
The Honorable Dan Patrick, Lieutenant Governor of Texas
The Honorable Dade Phelan, Speaker of the Texas House of Representatives
Members of the Texas Legislature

July 20, 2021

We write this letter in our personal capacities as researchers in the fields of statistics, machine learning and artificial intelligence, law, sociology, and anthropology. In recent years, an increasing number of court systems have adopted actuarial pretrial risk assessments. Recognizing the importance of a defendant’s constitutional presumption of innocence, as well as the practical impact of pretrial detention on communities, lawmakers in Texas have been asked to consider bail reform in the current special session.

Pretrial risk assessment tools are often promoted as an essential part of bail reform that can help judges make more informed, objective pretrial decisions, thereby mitigating racial bias and reducing pretrial incarceration rates without increasing rates of pretrial crime or missed court appearances. We have closely watched the development and deployment of these tools, conducted independent research, and carefully studied other research in this field.

We include with this letter a statement of grave concerns with the technical limitations of pretrial risk assessments. These tools suffer from serious methodological flaws that undermine their accuracy, validity, and effectiveness. As academic researchers in relevant fields, we feel obligated to communicate these concerns to assist the legislature as it continues to consider pretrial reforms.

As the statement details, these technical problems cannot readily be resolved. We recommend that other reforms be considered to improve pretrial justice in Texas.

Thank you for your consideration.

Enclosure:
Statement re: Technical Flaws of Pretrial Risk Assessments Raise Grave Concerns
TECHNICAL FLAWS OF PRETRIAL RISK ASSESSMENTS RAISE GRAVE CONCERNS

SUMMARY

Actuarial pretrial risk assessments suffer from serious technical flaws that undermine their accuracy, validity, and effectiveness. They do not accurately measure the risks that judges are required by law to consider. When predicting flight and danger, many tools use inexact and overly broad definitions of those risks. When predicting violence, no tool available today can adequately distinguish one person’s risk of violence from another. Misleading risk labels hide the uncertainty of these high-stakes predictions and can lead judges to overestimate the risk and prevalence of pretrial violence. To generate predictions, risk assessments rely on deeply flawed data, such as historical records of arrests, charges, convictions, and sentences. This data is neither a reliable nor a neutral measure of underlying criminal activity. Decades of research have shown that, for the same conduct, African-American and Latinx people are more likely to be arrested, prosecuted, convicted and sentenced to harsher punishments than their white counterparts. Risk assessments that incorporate this distorted data will produce distorted results. These problems cannot be resolved with technical fixes. We strongly recommend turning to other reforms.

ACTUARIAL RISK ASSESSMENTS DO NOT ACCURATELY MEASURE PRETRIAL RISKS

When making pretrial release decisions, judges must impose the least restrictive conditions of release necessary to secure the presence of a person at trial and protect the safety of the community. To accomplish this task, judges must identify and mitigate certain pretrial risks, specifically of a person causing serious harm to the community or fleeing the jurisdiction prior to their trial. Today’s pretrial risk assessments are ill-equipped to support judges in evaluating and effectively intervening on these specific risks, because the outcomes that these tools measure do not match the risks that judges are required by law to consider. For example, many risk assessments only provide a “pretrial failure” risk score, which is a combined outcome of missing a court appearance or being rearrested. Many scholars have warned that such a composite score could lead to an overestimation of both flight and danger, and can make it more, not less, difficult to identify effective interventions.1

1E.g., Lauryn P. Gouldin, Disentangling Flight Risk from Dangerousness, 2016 BYU L. Rev. 837, 887-88 (2018). The interventions which improve an individual’s likelihood of appearing in court (text reminders, transportation services, flexible scheduling) are often quite different from interventions designed to ensure community safety (stay-away orders, curfews, drug testing).
Even when pretrial risk assessments break out risk scores into distinct categories, the data used to define and measure flight and danger are inexact and overly broad. For example, risk assessments frequently define “public safety risk” as the probability of arrest. When tools conflate the likelihood of arrest for any reason with risk of “violence,” a large number of people will be labeled a threat to public safety without sufficient justification. Risk assessments that include minor offenses, such as missing a court-debt payment, in their definition of danger run the risk of increasing pretrial incarceration rates and further exacerbating racial inequalities in pretrial outcomes.

Some risk assessments define public safety risk more narrowly as the risk that a person will be arrested for a violent crime while on pretrial release. But because pretrial violence is exceedingly rare, it is challenging to statistically predict. Risk assessments cannot identify people who are more likely than not to commit a violent crime. The fact is, the vast majority of even the highest risk individuals will not go on to be arrested for a violent crime while awaiting trial. Consider the dataset used to build the Public Safety Assessment (PSA): 92% of the people who were flagged for pretrial violence did not get arrested for a violent crime and 98% of the people who were not flagged did not get arrested for a violent crime. If these tools were calibrated to be as accurate as possible, then they would predict that every person was unlikely to commit a violent crime while on pretrial release. Instead, risk assessments sacrifice accuracy and generate substantially more false positives (people who are flagged for violence but do not go on to commit a violent crime) than true positives (people who are flagged for violence and do go on to be arrested for a violent crime). Consequently, violence risk assessments could easily lead judges to overestimate the risk of pretrial violence and detain more people than is justified.

Finally, current risk assessment instruments are unable to distinguish one person’s risk of violence from another’s. In statistics, predictions are made within a range of likelihood, rather than as a single point estimate. For example, a predictive algorithm might confidently estimate a person’s risk of arrest as somewhere between a range of five and fifteen percent. Studies have demonstrated that predictive models can only make reliable predictions about a person’s risk of violence within very large ranges of likelihood, such as twenty to sixty percent. As a result, virtually everyone’s range of likelihood

2For example, the Colorado Pretrial Assessment Tool (CPAT) defines a risk to “public safety” as any “new criminal filing,” including for traffic stops and municipal offenses. The Colorado Pretrial Risk Assessment Tool Revised Report 18 (2012).

3For decades, communities of color have been arrested at higher rates than their white counterparts, even for crimes that these racial groups engage in at comparable rates. As a result, people of color are more likely to be labeled as “dangerous” than their white counterparts when arrest data is used to measure public safety risk. Thus, they will bear a disproportionate amount of the burden that stems from these harmful conflations between arrest and danger.

4Public Safety Assessment, PSA Results (2019).

5Julia Angwin et al., Machine Bias, ProPublica (May 23, 2016), https://www.propublica.org/article/machinebias-risk-assessments-in-criminal-sentencing. These inaccuracies are very much mediated by race – African-Americans were twice as likely to be mislabeled as high risk than their white counterparts.

6For example, a recent study found that people significantly overestimate the recidivism rate for individuals who are labeled as “moderate-high” or “high” risk on a risk assessment. Daniel A., Krauss, Gabriel I. Cook & Lukas Klapatch, Risk Assessment Communication Difficulties: An Empirical Examination of the Effects of Categorical Versus Probabilistic Risk Communication in Sexually Violent Predator Decisions, Behav. Sci. & L. (2018). (Participants greatly overestimated the true recidivism rate for those assessed as moderate-high risk category – the true rate was less than fifty percent of what participants predicted.)

7Stephen D. Hart & David J. Cooke, Another Look at the (Im-)Precision of Individual Risk Estimates Made Using Actuarial Risk
overlaps. When everyone is similar, it becomes impossible to differentiate people with low and high risks of violence. At present, there is no statistical remedy to this challenge.

DATA USED TO BUILD PRETRIAL RISK ASSESSMENTS ARE DISTORTED

Risk assessments are frequently posited as a solution to judges’ implicit biases. Yet the data used to build pretrial risk assessments are deeply flawed and racially biased. Pretrial risk assessments rely on historical records of arrests, charges, convictions, and sentences to generate predictions about an individual’s propensity for “pretrial failure.” These tools assume that criminal history data are a reliable and neutral measure of underlying criminal activity, but such records cannot be relied upon for this purpose. Arrest records are both under- and over-inclusive of the true crime rate. Arrest records are under-inclusive because they only chart law enforcement activity, and many crimes do not result in arrest. Less than half of all reported violent crimes result in an arrest, and less than a quarter of reported property crimes result in an arrest. Arrest records are also over-inclusive because people are wrongly arrested and arrested for minor violations, including those that cannot result in jail time. Moreover, decades of research have shown that, for the same conduct, African-American and Latinx people are more likely to be arrested, prosecuted, convicted, and sentenced to harsher punishments than their white counterparts. People of color are treated more harshly than similarly situated white people at each stage of the legal system, which results in serious distortions in the data used to develop risk assessment tools:

- **Arrests**: For decades, communities of color have been arrested at higher rates than their white counterparts, even for crimes that these racial groups engage in at comparable rates. For example, African-Americans are 83% more likely to be arrested for marijuana compared to whites at age 22 and 235% more likely to be arrested at age 27, in spite of similar marijuana usage rates across racial groups. Similarly, African-American drivers are three times as likely as whites to

Assessment Instruments, 31 Behav. Sci. Law 81, 93 (2013).

10 Megan Stevenson & Sandra G. Mayson, The Scale of Misdemeanor Justice, 98 B.U. L. Rev. 731, 769-770 (2018). This comprehensive national review of misdemeanor arrest data has shown systemic and persistent racial disparities for most misdemeanor offenses. The study shows that “black arrest rate is at least twice as high as the white arrest rate for disorderly conduct, drug possession, simple assault, theft, vagrancy, and vandalism.” Id. at 759. This study shows that “many misdemeanor offenses criminalize activities that are not universally considered wrongful, and are often symptoms of poverty, mental illness, or addiction.” Id. at 766.

11 “[R]acial disparity in drug arrests between black and whites cannot be explained by race differences in the extent of drug offending, nor the nature of drug offending.” Ojmarrh Mitchell & Michael S. Caudy, Examining Racial Disparities in Drug Arrests,
be searched during routine traffic stops, even though police officers generally have a lower “hit rate” for contraband when they search drivers of color.12 This leads to an overrepresentation of people of color in arrest data. Predictive algorithms that rely on this data overestimate pretrial risk for people of color.

- **Charges:** Empirical research has found that African-American defendants face significantly more severe charges than white defendants, even after controlling for a multitude of factors.13 Persistent patterns of differential charging make prior charges an unreliable variable for building risk assessments.

- **Convictions & Sentences:** Compared to similarly situated white people, African-Americans are more likely to be convicted14 and more likely to be sentenced to incarceration.15

Risk assessments that incorporate this distorted data will produce distorted results.16 There are no technical fixes for these distortions.

CONCLUSION

Pretrial risk assessments do not guarantee or even increase the likelihood of better pretrial outcomes. Risk assessment tools can simply shift or obscure problems with current pretrial practices. Some jurisdictions that have adopted risk assessment tools have seen positive trends in pretrial outcomes, but other jurisdictions have experienced the opposite. Within jurisdictions that have achieved positive outcomes, it is uncertain whether the risk assessment tools were responsible for that success or whether that success is due to other reforms or changes that happened at the same time. Given these mixed outcomes, it is impossible to predict the impact of pretrial risk assessments in any jurisdiction.

Beyond the technical flaws outlined in this statement, a broader and growing body of research questions the validity, ethics, and efficacy of actuarial pretrial risk assessments. For example, most risk assessments are proprietary technology, and defendants assessed by these tools are not allowed the opportunity to inspect and critique the algorithms or their underlying data. Poor implementation and lack of judicial training and buy-in can undermine reforms. Validity and fairness questions arise when tools are trained on data from one jurisdiction but deployed in a jurisdiction with different demographics, judicial culture, and policing practices.

15David S. Abrams, Marianne Bertrand & Sendhil Mullainathan, Do Judges Vary in Their Treatment of Race, 41 J. L. STUD. 347, 350 (2012).
16There have been attempts to solve this problem on the back end by mitigating outcome disparities in risk assessment predictions, but they overlook and do not address the fundamental distortions outlined above.
This statement specifically addresses fundamental, technical problems with actuarial risk assessment instruments. These technical problems cannot be resolved. We strongly recommend turning to other reforms.

Chelsea Barabas
Doctoral Candidate
MIT Media Lab

Ruha Benjamin, PhD
Associate Professor
Princeton University

John Bowers
Research Associate
Harvard Law School

Meredith Broussard, PhD
Associate Professor
New York University

Joy Buolamwini
Founder
Algorithmic Justice League

Sasha Constanza-Chock, PhD
Faculty Associate, Harvard University
Berkman-Klein Center for Internet and Society

Kate Crawford, PhD
Distinguished Professor, Co-Founder, Co-Director
AI Now Institute, NYU

Karthik Dinakar, PhD
Research Scientist
MIT Media Lab

Colin Doyle, Staff Attorney
Criminal Justice Policy Program
Harvard Law School

Timnit Gebru, PhD
Co-founder
Black in AI

Bernard E. Harcourt
Professor of Law & Political Science
Columbia University

Stefan Helmreich, PhD
Professor & Elting E. Morison Chair
Anthropology, MIT

Brook Hopkins, Executive Director
Criminal Justice Policy Program
Harvard Law School
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martha Minow</td>
<td>300th Anniversary University Professor</td>
</tr>
<tr>
<td></td>
<td>Harvard University</td>
</tr>
<tr>
<td>Cathy O’Neil, PhD</td>
<td>Author</td>
</tr>
<tr>
<td></td>
<td>Weapons of Math Destruction</td>
</tr>
<tr>
<td>Rodrigo Ochigame</td>
<td>Doctoral Candidate, HASTS</td>
</tr>
<tr>
<td></td>
<td>MIT</td>
</tr>
<tr>
<td>Heather Paxson, PhD</td>
<td>Professor of Anthropology</td>
</tr>
<tr>
<td></td>
<td>MIT</td>
</tr>
<tr>
<td>Venerable Tenzin Priyadarshi</td>
<td>Director, Ethics Initiative</td>
</tr>
<tr>
<td></td>
<td>MIT Media Lab</td>
</tr>
<tr>
<td>Rashida Richardson</td>
<td>Director of Policy Research</td>
</tr>
<tr>
<td></td>
<td>AI Now Institute, NYU</td>
</tr>
<tr>
<td>Bruce Schneier</td>
<td>Fellow and Lecturer</td>
</tr>
<tr>
<td></td>
<td>Harvard Kennedy School</td>
</tr>
<tr>
<td>Jason Schultz</td>
<td>Professor</td>
</tr>
<tr>
<td></td>
<td>NYU School of Law</td>
</tr>
<tr>
<td>Jeffrey Selbin</td>
<td>Clinical Professor of Law</td>
</tr>
<tr>
<td></td>
<td>UC Berkeley School of Law</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordi Weinstock</td>
<td>Lecturer on Law</td>
</tr>
<tr>
<td></td>
<td>Harvard Law School</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethan Zuckerman</td>
<td>Associate Professor</td>
</tr>
<tr>
<td></td>
<td>University of Massachusetts Amherst</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonathan Zittrain</td>
<td>George Bemis Professor of International Law</td>
</tr>
<tr>
<td></td>
<td>Harvard Law School</td>
</tr>
</tbody>
</table>